Node classification for graph-structured data aims to classify nodes whose labels are unknown. While studies on static graphs are prevalent, few studies have focused on dynamic graph node classification. Node classification on dynamic graphs is challenging for two reasons. First, the model needs to capture both structural and temporal information, particularly on dynamic graphs with a long history and require large receptive fields. Second, model scalability becomes a significant concern as the size of the dynamic graph increases. To address these problems, we propose the Time Augmented Dynamic Graph Neural Network (TADGNN) framework. TADGNN consists of two modules: 1) a time augmentation module that captures the temporal evolution of nodes across time structurally, creating a time-augmented spatio-temporal graph, and 2) an information propagation module that learns the dynamic representations for each node across time using the constructed time-augmented graph. We perform node classification experiments on four dynamic graph benchmarks. Experimental results demonstrate that TADGNN framework outperforms several static and dynamic state-of-the-art (SOTA) GNN models while demonstrating superior scalability. We also conduct theoretical and empirical analyses to validate the efficiency of the proposed method. Our code is available at https://sites.google.com/view/tadgnn.
translated by 谷歌翻译
最近,视觉变形金刚(VITS)正在快速发展,并开始挑战计算机视觉(CV)领域的卷积神经网络(CNNS)的统治。利用用于更换卷积的硬编码的感应偏差的通用变压器架构,VITS已经超过了CNN,尤其是数据充足的情况。然而,VITS容易超过小型数据集,因此依靠大规模的预训练,这花费了巨大的时间。在本文中,我们努力通过引入CNNS的归纳偏见来解放VITS,通过返回vits,同时保留其网络架构以获得更高的上限并设置更合适的优化目标。首先,代理CNN基于具有感应偏差的给定韦尔设计。然后提出了一种自举训练算法,共同优化了重量共享的药剂和vit,在此期间,VIT学习来自代理的中间特征的诱导偏差。具有有限培训数据的CiFar-10/100和Imagenet-1k上的广泛实验表明,令人鼓舞的结果,感应偏差有助于VITS更快地收敛,甚至更少的参数。
translated by 谷歌翻译
Graph Neural Networks (GNNs), originally proposed for node classification, have also motivated many recent works on edge prediction (a.k.a., link prediction). However, existing methods lack elaborate design regarding the distinctions between two tasks that have been frequently overlooked: (i) edges only constitute the topology in the node classification task but can be used as both the topology and the supervisions (i.e., labels) in the edge prediction task; (ii) the node classification makes prediction over each individual node, while the edge prediction is determinated by each pair of nodes. To this end, we propose a novel edge prediction paradigm named Edge-aware Message PassIng neuRal nEtworks (EMPIRE). Concretely, we first introduce an edge splitting technique to specify use of each edge where each edge is solely used as either the topology or the supervision (named as topology edge or supervision edge). We then develop a new message passing mechanism that generates the messages to source nodes (through topology edges) being aware of target nodes (through supervision edges). In order to emphasize the differences between pairs connected by supervision edges and pairs unconnected, we further weight the messages to highlight the relative ones that can reflect the differences. In addition, we design a novel negative node-pair sampling trick that efficiently samples 'hard' negative instances in the supervision instances, and can significantly improve the performance. Experimental results verify that the proposed method can significantly outperform existing state-of-the-art models regarding the edge prediction task on multiple homogeneous and heterogeneous graph datasets.
translated by 谷歌翻译
There is increasing adoption of artificial intelligence in drug discovery. However, existing works use machine learning to mainly utilize the chemical structures of molecules yet ignore the vast textual knowledge available in chemistry. Incorporating textual knowledge enables us to realize new drug design objectives, adapt to text-based instructions, and predict complex biological activities. We present a multi-modal molecule structure-text model, MoleculeSTM, by jointly learning molecule's chemical structures and textual descriptions via a contrastive learning strategy. To train MoleculeSTM, we construct the largest multi-modal dataset to date, namely PubChemSTM, with over 280K chemical structure-text pairs. To demonstrate the effectiveness and utility of MoleculeSTM, we design two challenging zero-shot tasks based on text instructions, including structure-text retrieval and molecule editing. MoleculeSTM possesses two main properties: open vocabulary and compositionality via natural language. In experiments, MoleculeSTM obtains the state-of-the-art generalization ability to novel biochemical concepts across various benchmarks.
translated by 谷歌翻译
We present the Group Propagation Vision Transformer (GPViT): a novel nonhierarchical (i.e. non-pyramidal) transformer model designed for general visual recognition with high-resolution features. High-resolution features (or tokens) are a natural fit for tasks that involve perceiving fine-grained details such as detection and segmentation, but exchanging global information between these features is expensive in memory and computation because of the way self-attention scales. We provide a highly efficient alternative Group Propagation Block (GP Block) to exchange global information. In each GP Block, features are first grouped together by a fixed number of learnable group tokens; we then perform Group Propagation where global information is exchanged between the grouped features; finally, global information in the updated grouped features is returned back to the image features through a transformer decoder. We evaluate GPViT on a variety of visual recognition tasks including image classification, semantic segmentation, object detection, and instance segmentation. Our method achieves significant performance gains over previous works across all tasks, especially on tasks that require high-resolution outputs, for example, our GPViT-L3 outperforms Swin Transformer-B by 2.0 mIoU on ADE20K semantic segmentation with only half as many parameters. Code and pre-trained models are available at https://github.com/ChenhongyiYang/GPViT .
translated by 谷歌翻译
In recent years, the number of parameters of one deep learning (DL) model has been growing much faster than the growth of GPU memory space. People who are inaccessible to a large number of GPUs resort to heterogeneous training systems for storing model parameters in CPU memory. Existing heterogeneous systems are based on parallelization plans in the scope of the whole model. They apply a consistent parallel training method for all the operators in the computation. Therefore, engineers need to pay a huge effort to incorporate a new type of model parallelism and patch its compatibility with other parallelisms. For example, Mixture-of-Experts (MoE) is still incompatible with ZeRO-3 in Deepspeed. Also, current systems face efficiency problems on small scale, since they are designed and tuned for large-scale training. In this paper, we propose Elixir, a new parallel heterogeneous training system, which is designed for efficiency and flexibility. Elixir utilizes memory resources and computing resources of both GPU and CPU. For flexibility, Elixir generates parallelization plans in the granularity of operators. Any new type of model parallelism can be incorporated by assigning a parallel pattern to the operator. For efficiency, Elixir implements a hierarchical distributed memory management scheme to accelerate inter-GPU communications and CPU-GPU data transmissions. As a result, Elixir can train a 30B OPT model on an A100 with 40GB CUDA memory, meanwhile reaching 84% efficiency of Pytorch GPU training. With its super-linear scalability, the training efficiency becomes the same as Pytorch GPU training on multiple GPUs. Also, large MoE models can be trained 5.3x faster than dense models of the same size. Now Elixir is integrated into ColossalAI and is available on its main branch.
translated by 谷歌翻译
Automated identification of myocardial scar from late gadolinium enhancement cardiac magnetic resonance images (LGE-CMR) is limited by image noise and artifacts such as those related to motion and partial volume effect. This paper presents a novel joint deep learning (JDL) framework that improves such tasks by utilizing simultaneously learned myocardium segmentations to eliminate negative effects from non-region-of-interest areas. In contrast to previous approaches treating scar detection and myocardium segmentation as separate or parallel tasks, our proposed method introduces a message passing module where the information of myocardium segmentation is directly passed to guide scar detectors. This newly designed network will efficiently exploit joint information from the two related tasks and use all available sources of myocardium segmentation to benefit scar identification. We demonstrate the effectiveness of JDL on LGE-CMR images for automated left ventricular (LV) scar detection, with great potential to improve risk prediction in patients with both ischemic and non-ischemic heart disease and to improve response rates to cardiac resynchronization therapy (CRT) for heart failure patients. Experimental results show that our proposed approach outperforms multiple state-of-the-art methods, including commonly used two-step segmentation-classification networks, and multitask learning schemes where subtasks are indirectly interacted.
translated by 谷歌翻译
The selection of an optimal pacing site, which is ideally scar-free and late activated, is critical to the response of cardiac resynchronization therapy (CRT). Despite the success of current approaches formulating the detection of such late mechanical activation (LMA) regions as a problem of activation time regression, their accuracy remains unsatisfactory, particularly in cases where myocardial scar exists. To address this issue, this paper introduces a multi-task deep learning framework that simultaneously estimates LMA amount and classify the scar-free LMA regions based on cine displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging (MRI). With a newly introduced auxiliary LMA region classification sub-network, our proposed model shows more robustness to the complex pattern cause by myocardial scar, significantly eliminates their negative effects in LMA detection, and in turn improves the performance of scar classification. To evaluate the effectiveness of our method, we tests our model on real cardiac MR images and compare the predicted LMA with the state-of-the-art approaches. It shows that our approach achieves substantially increased accuracy. In addition, we employ the gradient-weighted class activation mapping (Grad-CAM) to visualize the feature maps learned by all methods. Experimental results suggest that our proposed model better recognizes the LMA region pattern.
translated by 谷歌翻译
自主导航的同时本地化和映射(SLAM)框架依赖于强大的数据关联来识别循环封闭以进行后端轨迹优化。对于配备了多层回声器(MBE)的自动水下车辆(AUV),由于海床中可识别的地标的稀缺性,数据关联尤其具有挑战性MBE数据的低分辨率特征。循环封闭检测的深度学习解决方案已显示出来自更结构化环境的数据的出色性能。但是,它们转移到海底领域并不是直接的,并且由于缺乏测深的数据集而阻碍了移植它们的努力。因此,在本文中,我们提出了一种神经网络体系结构,旨在展示将这种技术适应测深数据中对应匹配的潜力。我们从AUV任务中训练我们的框架,并评估其在循环闭合检测任务和粗点云对齐任务上的性能。最后,我们在更传统的方法上展示了其潜力,并释放其实现和所使用的数据集。
translated by 谷歌翻译
准确而健壮的本地化是移动代理的基本需求。视觉惯性进程(VIO)算法将信息从摄像机和惯性传感器中利用到估计位置和翻译。最近基于深度学习的VIO模型以数据驱动的方式提供姿势信息,而无需设计手工制作的算法,因此吸引了注意力。现有的基于学习的VIO模型依赖于经常性模型来融合多模式数据和过程传感器信号,这些模型很难训练并且不够有效。我们提出了一个基于学习的新型VIO框架,并有效地结合了视觉和惯性特征,以供各州估计。我们提出的模型也能够准确,稳健地估计,即使在具有挑战性的情况下,例如在阴天和充满水的地面上,对于传统的Vio算法而言,这很难提取视觉特征。实验验证了它在不同场景中的表现优于传统和基于学习的VIO基线。
translated by 谷歌翻译